Exemple

Considérons l'application $T: \mathbb{R}^2 \to \mathbb{R}^3$ donnée par

$$T(\vec{x}) = \begin{pmatrix} 3x_1 - x_2 \\ 5x_1 + 2x_2 \\ x_1 + x_2 \end{pmatrix}$$

Noyau et image d'une application

Définition 24 (Noyau et image). Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire. Le noyau de T est

L'image de T est

Exemples

Chapitre 2 : Calcul Matriciel

But

On a vu que les systèmes d'équations linéaires sont étroitement liés à la notion de matrice, à travers la matrice des coefficients ainsi que la matrice augmentée associées. L'étude plus approfondie des matrices fournira des outils pour la résolution des systèmes :

- 1. Lorsque A est carrée et que l'application T_A associée est bijective, on utilisera la matrice associée à l'application inverse de T_A .
- 2. Lorsque la matrice est rectangulaire $(n \neq m)$, on travaillera avec des factorisations matricielles.
- 3. Pour des matrices de grande taille, on pourra les étudier par blocs.

2.1 Opérations matricielles

On note $M_{m\times n}(\mathbb{R})$ l'ensemble de toutes les matrices de taille $m\times n$ dont les coefficients sont des nombres réels. Considérons une matrice $A\in M_{m\times n}(\mathbb{R})$. On utilisera les notations suivantes :

On notera encore $0_{m\times n} \in M_{m\times n}(\mathbb{R})$ la matrice dont tous les coefficients valent 0, dite *matrice nulle*, ainsi que $I_n \in M_{n\times n}(\mathbb{R})$ la matrice carrée qui a des 1 sur la diagonale et dont tous les autres coefficients sont nuls, dite *matrice identité*.

Addition de matrices

Soient $A, B \in M_{m \times n}(\mathbb{R})$. On définit la somme A+B de la façon suivante :

Multiplication par un scalaire

Pour $A \in M_{m \times n}(\mathbb{R})$ et $\lambda \in \mathbb{R}$, on définit λA par

Théorème 13. Soient A,B et $C \in M_{m \times n}(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$. Alors on a

$$1. A + B = B + A$$

2.
$$(A + B) + C = A + (B + C)$$

$$\beta. A + 0_{m \times n} = A$$

$$4. \ \lambda(A+B) = \lambda A + \lambda B$$

5.
$$(\lambda + \mu)A = \lambda A + \mu A$$

$$6. (\lambda \mu) A = \lambda(\mu A)$$

$$7. \ 1 \cdot A = A$$

$$8. \ 0 \cdot A = 0_{m \times n}$$

Ces propriétés découlent de la définition de l'addition des matrices, de la multiplication par un scalaire et des propriétés de \mathbb{R} .

Multiplication de matrices

La définition de la multiplication de deux matrices A et B découle naturellement de la composition des applications linéaires T_A et T_B associées.

Définition

Soient $T_B: \mathbb{R}^p \to \mathbb{R}^n$ et $T_A: \mathbb{R}^n \to \mathbb{R}^m$ des applications. On définit l'application composée $T_A \circ T_B: \mathbb{R}^p \to \mathbb{R}^m$ par

Remarque : Si T_A et T_B sont linéaires, alors l'application composée $T_A \circ T_B$ est aussi linéaire.

Conséquence : La matrice associée à l'application $T_A \circ T_B$ existe.

Exemple

Définition 25 (Produit matriciel).

Soient $A \in M_{m \times n}(\mathbb{R})$ et $B \in M_{n \times p}(\mathbb{R})$ deux matrices. Alors le produit AB est défini par

Règle ligne-colonne

Si $A \in M_{m \times n}(\mathbb{R})$ et $B \in M_{n \times p}(\mathbb{R})$ sont des matrices, alors leur produit C = AB est donné par $C = (c_{ij})$ où

Exemple

Théorème 14. Soient $A \in M_{m \times n}(\mathbb{R})$ une matrice et B et C des matrices telles que les expressions ci-dessous soient définies. On a

1.
$$A(BC) = (AB)C$$

$$2. A(B+C) = AB + AC$$

$$3. (A+B)C = AC + BC$$

4.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$
 pour tout $\lambda \in \mathbb{R}$

5.
$$A = AI_{n \times n} = I_{m \times m}A$$

Illustration

Remarques importantes concernant les propriétés du produit matriciel